Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
2.
Nat Commun ; 14(1): 7244, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945556

RESUMO

Materials with tunable modulus, viscosity, and complex viscoelastic spectra are crucial in applications such as self-healing, additive manufacturing, and energy damping. It is still challenging to predictively design polymer networks with hierarchical relaxation processes, as many competing factors affect dynamics. Here, networks with both pendant and telechelic architecture are synthesized with mixed orthogonal dynamic bonds to understand how the network connectivity and bond exchange mechanisms govern the overall relaxation spectrum. A hydrogen-bonding group and a vitrimeric dynamic crosslinker are combined into the same network, and multimodal relaxation is observed in both pendant and telechelic networks. This is in stark contrast to similar networks where two dynamic bonds share the same exchange mechanism. With the incorporation of orthogonal dynamic bonds, the mixed network also demonstrates excellent damping and improved mechanical properties. In addition, two relaxation processes arise when only hydrogen-bond exchange is present, and both modes are retained in the mixed dynamic networks. This work provides molecular insights for the predictive design of hierarchical dynamics in soft materials.

3.
ACS Macro Lett ; 12(7): 901-907, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37358349

RESUMO

The diffusion of two aromatic dyes with nearly identical sizes was measured in ethylene vitrimers with precise linker lengths and borate ester cross-links using fluorescence recovery after photobleaching (FRAP). One dye possessed a reactive hydroxyl group, while the second was inert. The reaction of the hydroxyl group with the network is slow relative to the hopping times of the dye, resulting in a large slowdown by a factor of 50 for a reactive probe molecule. A kinetic model was fit to the fluorescence intensity data to determine rate constants for the reversible reaction of the dye from the network, which confirms the role of slow reaction kinetics. A second network cross-linker was also investigated with a substituted boronic ester showing ∼10,000 times faster exchange kinetics. In this system, the two dyes show the same diffusion coefficient, as the reaction is no longer the rate-limiting step. The role of dense meshes on small and large dyes is also discussed in the context of the existing theories. These results highlight the potential of dynamic networks to control penetrant transport through synergistic effects of the mesh size, dynamic bond kinetics, and penetrant-network interactions.

5.
ACS Cent Sci ; 9(3): 508-518, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36968535

RESUMO

The diffusion of molecules ("penetrants") of variable size, shape, and chemistry through dense cross-linked polymer networks is a fundamental scientific problem broadly relevant in materials, polymer, physical, and biological chemistry. Relevant applications include separation membranes, barrier materials, drug delivery, and nanofiltration. A major open question is the relationship between transport, thermodynamic state, and penetrant and polymer chemical structure. Here we combine experiment, simulation, and theory to unravel these competing effects on penetrant transport in rubbery and supercooled polymer permanent networks over a wide range of cross-link densities, size ratios, and temperatures. The crucial importance of the coupling of local penetrant hopping to polymer structural relaxation and the secondary importance of mesh confinement effects are established. Network cross-links strongly slow down nm-scale polymer relaxation, which greatly retards the activated penetrant diffusion. The demonstrated good agreement between experiment, simulation, and theory provides strong support for the size ratio (penetrant diameter to the polymer Kuhn length) as a key variable and the usefulness of coarse-grained simulation and theoretical models that average over Angstrom scale structure. The developed theory provides an understanding of the physical processes underlying the behaviors observed in experiment and simulation and suggests new strategies for enhancing selective polymer membrane design.

7.
ACS Macro Lett ; 12(1): 86-92, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36595317

RESUMO

There is growing interest in polymers with high ionic conductivity for applications including batteries, fuel cells, and separation membranes. However, measuring ion diffusion in polymers can be challenging, requiring complex procedures and instrumentation. Here, a simple strategy to study ion diffusion in polymers is presented that utilizes ion-chromic spiropyan as an indicator to measure the diffusion of LiTFSI, KTFSI, and NaTFSI within poly(ethylene oxide)-based polymer networks. These systems are selected, as these are common ions and polymers used in energy storage applications, however, the approach described is not specific to materials for energy storage. Specifically, to enabling the study of ion diffusion, these salts cause the spiropyran to undergo an isomerization reaction, which results in a significant color change. This colorimetric response enables the determination of the diffusion coefficients of these ions within films of these polymers simply by optically tracking the spatial-temporal evolution of the isomerization product within the film and fitting the data to the relevant diffusion equations. The simplicity of the method makes it amenable to the study of ion diffusion in polymers under a range of conditions, including various temperatures and under macroscopic deformation.


Assuntos
Polímeros , Sais , Íons , Temperatura , Difusão
8.
EMBO J ; 42(2): e111869, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36245281

RESUMO

Mucus is made of enormous mucin glycoproteins that polymerize by disulfide crosslinking in the Golgi apparatus. QSOX1 is a catalyst of disulfide bond formation localized to the Golgi. Both QSOX1 and mucins are highly expressed in goblet cells of mucosal tissues, leading to the hypothesis that QSOX1 catalyzes disulfide-mediated mucin polymerization. We found that knockout mice lacking QSOX1 had impaired mucus barrier function due to production of defective mucus. However, an investigation on the molecular level revealed normal disulfide-mediated polymerization of mucins and related glycoproteins. Instead, we detected a drastic decrease in sialic acid in the gut mucus glycome of the QSOX1 knockout mice, leading to the discovery that QSOX1 forms regulatory disulfides in Golgi glycosyltransferases. Sialylation defects in the colon are known to cause colitis in humans. Here we show that QSOX1 redox control of sialylation is essential for maintaining mucosal function.


Assuntos
Glicosiltransferases , Complexo de Golgi , Mucosa Intestinal , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Animais , Camundongos , Colo/metabolismo , Dissulfetos/metabolismo , Glicoproteínas , Glicosiltransferases/metabolismo , Complexo de Golgi/metabolismo , Mucinas/química , Mucinas/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Mucosa Intestinal/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(46): e2211151119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343252

RESUMO

Rapid developments in high-performance computing and high-power electronics are driving needs for highly thermal conductive polymers and their composites for encapsulants and interface materials. However, polymers typically have low thermal conductivities of ∼0.2 W/(m K). We studied the thermal conductivity of a series of epoxy resins cured by one diamine hardener and seven diepoxide monomers with different precise ethylene linker lengths (x = 2-8). We found pronounced odd-even effects of the ethylene linker length on the liquid crystalline order, mass density, and thermal conductivity. Epoxy resins with even x have liquid crystalline structure with the highest density of 1.44 g/cm3 and highest thermal conductivity of 1.0 W/(m K). Epoxy resins with odd x are amorphous with the lowest density of 1.10 g/cm3 and lowest thermal conductivity of 0.17 W/(m K). These findings indicate that controlling precise linker length in dense networks is a powerful route to molecular design of thermally conductive polymers.


Assuntos
Resinas Epóxi , Cristais Líquidos , Resinas Epóxi/química , Condutividade Térmica , Polímeros , Etilenos
10.
Proc Natl Acad Sci U S A ; 119(41): e2210094119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36194629

RESUMO

Understanding the activated transport of penetrant or tracer atoms and molecules in condensed phases is a challenging problem in chemistry, materials science, physics, and biophysics. Many angstrom- and nanometer-scale features enter due to the highly variable shape, size, interaction, and conformational flexibility of the penetrant and matrix species, leading to a dramatic diversity of penetrant dynamics. Based on a minimalist model of a spherical penetrant in equilibrated dense matrices of hard spheres, a recent microscopic theory that relates hopping transport to local structure has predicted a novel correlation between penetrant diffusivity and the matrix thermodynamic dimensionless compressibility, S0(T) (which also quantifies the amplitude of long wavelength density fluctuations), as a consequence of a fundamental statistical mechanical relationship between structure and thermodynamics. Moreover, the penetrant activation barrier is predicted to have a factorized/multiplicative form, scaling as the product of an inverse power law of S0(T) and a linear/logarithmic function of the penetrant-to-matrix size ratio. This implies an enormous reduction in chemical complexity that is verified based solely on experimental data for diverse classes of chemically complex penetrants dissolved in molecular and polymeric liquids over a wide range of temperatures down to the kinetic glass transition. The predicted corollary that the penetrant diffusion constant decreases exponentially with inverse temperature raised to an exponent determined solely by how S0(T) decreases with cooling is also verified experimentally. Our findings are relevant to fundamental questions in glassy dynamics, self-averaging of angstrom-scale chemical features, and applications such as membrane separations, barrier coatings, drug delivery, and self-healing.


Assuntos
Vidro , Física , Difusão , Vidro/química , Transição de Fase , Termodinâmica
11.
Angew Chem Int Ed Engl ; 61(41): e202206061, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36031709

RESUMO

Materials which selectively transport molecules offer powerful opportunities for concentrating and separating chemical agents. Here, utilizing static and dynamic chemical gradients, transport of molecules within swollen crosslinked polymers is demonstrated. Using an ≈200 µm static hydroxyl to hexyl gradient, the neutral ambipolar nerve agent surrogate diethyl (cyanomethyl)phosphonate (DECP) is directionally transported and concentrated 60-fold within 4 hours. To accelerate transport kinetics, a dynamic gradient (a "travelling wave") is utilized. Here, the non-polar dye pyrene was transported. The dynamic gradient is generated by an ion exchange process triggered by the localized introduction of an aqueous NaCl solution, which converts the gel from hydrophobic to hydrophilic. As the hydrophilic region expands, associated water enters the gel, and pyrene is pushed ahead of the expansion front. The dynamic gradient provides about 10-fold faster transport kinetics than the static gradient.

12.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L329-L337, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35881171

RESUMO

Previously we have shown that a gain-of-function MUC5B promoter variant (rs35705950) is the strongest risk factor for the development of idiopathic pulmonary fibrosis. We have also found that Muc5b overexpression reduces mucociliary clearance in mice, potentially leading to recurrent injury to the bronchoalveolar epithelia. Hypersensitivity pneumonitis (HP) is induced by inhalation of numerous causative antigens that may be affected by mucociliary clearance. We conducted this study to determine the role of Muc5b in a mouse model of HP induced by Saccharopolyspora rectivirgula (SR) antigen. We used Muc5b-deficient and wild-type (WT) mice to determine whether Muc5b plays a role in inflammation and fibrosis at 3 and 6 wk in an SR model of HP. We measured cell concentrations and MUC5B expression in whole lung lavage (WLL) and quantified fibrosis using hydroxyproline assay and second harmonic generation. Muc5b expression in WLL fluid was significantly increased in SR-exposed WT mice compared with saline controls. WT mice challenged with SR developed more inflammation and lung fibrosis at 6 wk compared with 3 wk postexposure. Moreover, we found that 6 wk following challenge with SR, Muc5b-deficient mice had less lung inflammation and less lung fibrosis than Muc5b WT mice. Furthermore, Muc5b-deficient mice had significantly lower concentrations of TGF-ß1 in the WLL compared with Muc5b WT mice at 6 wk of exposure. Muc5b appears to play a role in fibrosis in the animal model of HP and this may have implications for HP in humans.


Assuntos
Alveolite Alérgica Extrínseca , Fibrose Pulmonar Idiopática , Saccharopolyspora , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Humanos , Fibrose Pulmonar Idiopática/genética , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Mucina-5B/genética
13.
ACS Macro Lett ; 11(4): 475-483, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35575320

RESUMO

Vitrimers have been investigated in the past decade for their promise as recyclable, reprocessable, and self-healing materials. In this Viewpoint, we focus on some of the key open questions that remain regarding how the molecular-scale chemistry impacts macroscopic physical chemistry. The ability to design temperature-dependent complex viscoelastic spectra with independent control of viscosity and modulus based on knowledge of the dynamic bond and polymer chemistry is first discussed. Next, the role of dynamic covalent chemistry on self-assembly is highlighted in the context of crystallization and nanophase separation. Finally, the ability of dynamic bond exchange to manipulate molecular transport and viscoelasticity is discussed in the context of various applications. Future directions leveraging dynamic covalent chemistry to provide insights regarding fundamental polymer physics as well as imparting functionality into polymers are discussed in all three of these highlighted areas.


Assuntos
Polímeros , Físico-Química , Polímeros/química , Temperatura , Viscosidade
14.
Am J Respir Cell Mol Biol ; 67(2): 188-200, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608953

RESUMO

We previously identified a novel molecular subtype of idiopathic pulmonary fibrosis (IPF) defined by increased expression of cilium-associated genes, airway mucin gene MUC5B, and KRT5 marker of basal cell airway progenitors. Here we show the association of MUC5B and cilia gene expression in human IPF airway epithelial cells, providing further rationale for examining the role of cilium genes in the pathogenesis of IPF. We demonstrate increased multiciliogenesis and changes in motile cilia structure of multiciliated cells both in IPF and bleomycin lung fibrosis models. Importantly, conditional deletion of a cilium gene, Ift88 (intraflagellar transport 88), in Krt5 basal cells reduces Krt5 pod formation and lung fibrosis, whereas no changes are observed in Ift88 conditional deletion in club cell progenitors. Our findings indicate that aberrant injury-activated primary ciliogenesis and Hedgehog signaling may play a causative role in Krt5 pod formation, which leads to aberrant multiciliogenesis and lung fibrosis. This implies that modulating cilium gene expression in Krt5 cell progenitors is a potential therapeutic target for IPF.


Assuntos
Fibrose Pulmonar Idiopática , Bleomicina/toxicidade , Cílios/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Fibrose Pulmonar Idiopática/patologia , Transdução de Sinais
15.
J Clin Invest ; 132(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35239513

RESUMO

The respiratory tract surface is protected from inhaled pathogens by a secreted layer of mucus rich in mucin glycoproteins. Abnormal mucus accumulation is a cardinal feature of chronic respiratory diseases, but the relationship between mucus and pathogens during exacerbations is poorly understood. We identified elevations in airway mucin 5AC (MUC5AC) and MUC5B concentrations during spontaneous and experimentally induced chronic obstructive pulmonary disease (COPD) exacerbations. MUC5AC was more sensitive to changes in expression during exacerbation and was therefore more predictably associated with viral load, inflammation, symptom severity, decrements in lung function, and secondary bacterial infections. MUC5AC was functionally related to inflammation, as Muc5ac-deficient (Muc5ac-/-) mice had attenuated RV-induced (RV-induced) airway inflammation, and exogenous MUC5AC glycoprotein administration augmented inflammatory responses and increased the release of extracellular adenosine triphosphate (ATP) in mice and human airway epithelial cell cultures. Hydrolysis of ATP suppressed MUC5AC augmentation of RV-induced inflammation in mice. Therapeutic suppression of mucin production using an EGFR antagonist ameliorated immunopathology in a mouse COPD exacerbation model. The coordinated virus induction of MUC5AC and MUC5B expression suggests that non-Th2 mechanisms trigger mucin hypersecretion during exacerbations. Our data identified a proinflammatory role for MUC5AC during viral infection and suggest that MUC5AC inhibition may ameliorate COPD exacerbations.


Assuntos
Mucina-5AC , Doença Pulmonar Obstrutiva Crônica , Trifosfato de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Inflamação/metabolismo , Camundongos , Mucina-5AC/genética , Mucina-5AC/metabolismo , Mucina-5B/genética , Mucina-5B/metabolismo , Muco/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/virologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia
16.
Soft Matter ; 18(2): 293-303, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34913939

RESUMO

Vitrimers, dynamic polymer networks with topology conserving exchange reactions, have emerged as a promising platform for sustainable and reprocessable materials. While prior work has documented how dynamic bonds impact stress relaxation and viscosity, their role on crystallization has not been systematically explored. Precise ethylene vitrimers with 8, 10, or 12 methylene units between boronic ester junctions were investigated to understand the impact of bond exchange on crystallization kinetics and morphology. Compared to linear polyethylene which has been heavily investigated for decades, a long induction period for crystallization is seen in the vitrimers ultimately taking weeks in the densest networks. An increase in melting temperatures (Tm) of 25-30 K is observed with isothermal crystallization over 30 days. Both C10 and C12 networks initially form hexagonal crystals, while the C10 network transforms to orthorhombic over the 30 day window as observed with wide angle X-ray scattering (WAXS) and optical microscopy (OM). After 150 days of isothermal crystallization, the three linker lengths led to double diamond (C8), orthorhombic (C10), and hexagonal (C12) crystals indicating the importance of precision on final morphology. Control experiments on a precise, permanent network implicate dynamic bonds as the cause of long-time rearrangements of the crystals, which is critical to understand for applications of semi-crystalline vitrimers. The dynamic bonds also allow the networks to dissolve in water and alcohol-based solvents to monomers, followed by repolymerization while preserving the mechanical properties and melting temperatures.

17.
Pediatr Res ; 91(3): 612-620, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33753897

RESUMO

BACKGROUND: This research characterized mucociliary clearance (MCC) in young children with cystic fibrosis (CF). METHODS: Fourteen children (5-7 years old) with CF underwent: two baseline MCC measurements (Visits 1 and 2); one MCC measurement approximately 1 year later (Visit 3); and measurements of lung clearance index (LCI), a measure of ventilation inhomogeneity. RESULTS: Median (range) percent MCC through 60 min (MCC60) was similar on Visits 1 and 2 with 11.0 (0.9-33.7) and 12.8 (2.7-26.8), respectively (p = 0.95), and reproducible (Spearman Rho = 0.69; p = 0.007). Mucociliary clearance did not change significantly over 1 year with median percent MCC60 on Visit 3 [12.8 (3.7-17.6)] similar to Visit 2 (p = 0.58). Lower percent MCC60 on Visit 3 was significantly associated with higher LCI scores on Visit 3 (N = 14; Spearman Rho = -0.56; p = 0.04). CONCLUSIONS: Tests of MCC were reproducible and reliable over a 2-week period and stable over a 1-year period in 5-7-year-old children with CF. Lower MCC values were associated with increased ventilation inhomogeneity. These results suggest that measurements of MCC could be used in short-term clinical trials of interventions designed to modulate MCC and as a new, non-invasive test to evaluate early lung pathology in children with CF. IMPACT: This is the first study to characterize mucociliary clearance (MCC) in children with cystic fibrosis (CF) who were 5-7 years old. Measurements of mucociliary clearance were reproducible and reliable over a 2-week period and stable over a 1-year period. Variability in MCC between children was associated with differences in ventilation homogeneity, such that children with lower MCC values had increased ventilation inhomogeneity. These results suggest that measurements of MCC could be used in short-term clinical trials of interventions designed to modulate MCC and as a new, non-invasive test to evaluate early lung pathology in children with CF.


Assuntos
Fibrose Cística , Depuração Mucociliar , Criança , Pré-Escolar , Fibrose Cística/complicações , Humanos , Pulmão , Respiração , Testes de Função Respiratória/métodos
18.
Nat Commun ; 12(1): 5210, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471109

RESUMO

Durable hydrophobic materials have attracted considerable interest in the last century. Currently, the most popular strategy to achieve hydrophobic coating durability is through the combination of a perfluoro-compound with a mechanically robust matrix to form a composite for coating protection. The matrix structure is typically large (thicker than 10 µm), difficult to scale to arbitrary materials, and incompatible with applications requiring nanoscale thickness such as heat transfer, water harvesting, and desalination. Here, we demonstrate durable hydrophobicity and superhydrophobicity with nanoscale-thick, perfluorinated compound-free polydimethylsiloxane vitrimers that are self-healing due to the exchange of network strands. The polydimethylsiloxane vitrimer thin film maintains excellent hydrophobicity and optical transparency after scratching, cutting, and indenting. We show that the polydimethylsiloxane vitrimer thin film can be deposited through scalable dip-coating on a variety of substrates. In contrast to previous work achieving thick durable hydrophobic coatings by passively stacking protective structures, this work presents a pathway to achieving ultra-thin (thinner than 100 nm) durable hydrophobic films.

19.
Toxicol Sci ; 184(1): 127-141, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453837

RESUMO

Sulfur mustard (SM) has been widely used as a chemical warfare agent including most recently in Syria. Mice exposed to SM exhibit an increase in pro-inflammatory cytokines followed by immune cell infiltration in the lung, however, the mechanisms leading to these inflammatory responses has not been completely elucidated. Mast cells are one of the first responding innate immune cells found at the mucosal surfaces of the lung and have been reported to be activated by SM in the skin. Therefore, we hypothesized that nitrogen mustard (NM: a surrogate for SM) exposure promotes activation of mast cells causing chronic respiratory inflammation. To assess the role of mast cells in NM-mediated pulmonary toxicity, we compared the effects of NM exposure between C57BL/6 and B6.Cg-KitW-sh/HNihrJaeBsmJ (KitW-sh; mast cell deficient) mice. Lung injury was observed in C57BL/6J mice following NM exposure (0.125 mg/kg) at 72 h, which was significantly abrogated in KitW-sh mice. Although both strains exhibited damage from NM, C57BL/6J mice had higher inflammatory cell infiltration and more elevated prostaglandin D2 (PGD2) present in bronchoalveolar lavage fluid compared with KitW-sh mice. Additionally, we utilized murine bone marrow-derived mast cells to assess NM-induced early and late activation. Although NM exposure did not result in mast cell degranulation, we observed an upregulation in PGD2 and IL-6 levels following exposure to NM. Results suggest that mast cells play a prominent role in lung injury induced by NM and may contribute to the acute and potentially long-term lung injury observed caused by SM.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Animais , Substâncias para a Guerra Química/toxicidade , Citocinas , Lipídeos , Pulmão , Mastócitos , Mecloretamina/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Gás de Mostarda/toxicidade
20.
Curr Biol ; 31(15): R938-R945, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34375594

RESUMO

Mucus is a slimy hydrogel that lines the mucosal surfaces in our body, including the intestines, stomach, eyes, lungs and urogenital tract. This glycoprotein-rich network is truly the jack of all trades. As a barrier, it lubricates surfaces, protects our cells from physical stress, and selectively allows the passage of nutrients while clearing out pathogens and debris. As a home to our microbiota, it supports a level of microbial diversity that is unattainable with most culture methods. As a reservoir of complex carbohydrate structures called glycans, it plays critical roles in controlling cell adhesion and signaling, and it alters the behavior and spatial distribution of microbes. On top of all this, mucus regulates the passage of sperm during fertilization, heals wounds, helps us smell, and prevents the stomach from digesting itself, to name just a few of its functions. Given these impressive features, it is no wonder that mucus crosses boundaries of species and kingdoms - mucus gels are made by organisms ranging from the simplest metazoans to corals, snails, fish, and frogs. It is also no surprise that mucus is exploited in everyday applications, including foods, cosmetics, and other products relevant to medicine and industry.


Assuntos
Microbiota , Muco , Animais , Intestinos , Mucosa , Muco/metabolismo , Nutrientes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...